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INTRAMOLECULAR 1,3-DIYL TRAPPING REACTIONS. USE OF A
DIYLOPHILE DIRECTLY LINKED TO THE DIYL. PREPARATION OF BICYCLIC
FURANS.
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ABSTRACT. The chemistry of diazenes 1-3, each of which possesses a diylophile directly linked by
a C-C bord to a latent 1,3-diyl, was investigated. Each undergoes a loss of nitrogen and
conversion to products 4-6 respectively.

In conjunction with efforts designed to expand the scope of the intramolecular 1,3-diyl trapping
reaction and to demonstrate that it is useful for the construction of a reasonably wide range of
different ring systems, we elected to investigate the chemistry of diazenes 1—3.1 2 These
compounds were selected (1) to investigate the chemistry of a system where, assuming for the
sake of discuss:‘cou,3 that a 2-alkylidenecyclopentane-1,3-diyl is involved, the diyl and
diylophile are linked together directly by a C-C bond; (2) to determine whether a heteroatom
containing divlophile could be used, thereby leading to the construction of heterocycles; and
(3) to determine which, if either, of the two pi bonds in 3 would undergo preferential

cycloaddition. X
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Diazene 1, a system which incorporates a carbonyl unit as the diylophile, was heated to
50°C in deuterochloroform and the course of the reaction monitored by TLC and by 1H NMR at 300
MHz. After completion of the reaction and rapid chromatography on silica gel, a single product
whose spectral data were entirely consistent with that of the bicyclic furan 4 was isolated in
87% yield.3'4 Thus, it appears that the intramolecular diyl trapping reaction provides a simple
and reasonably efficient entry into bicyclic furans. Similarly, reflux of a THF solution of
diazene 2, a system wherein the carbonyl unit of 1 has been replaced by a simple C-C pi bond,

resulted in its conversion to diene 5 in 76% yield (1H NMR) .

1 —= (o
4

2 — O
5

Diazene 3 was synthesized and its chemistry was investigated to focus attention upon

item three above. After refluxing 3 in THF and removing the solvent (reaction monitored by
TIC), it was discovered that 3 was converted to triene 7 which smoothly rearranged to furan &

upon chromatography over silica gel (70% overall).
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This result promises to be of value in the implementation of synthetic schemes which call for

the use of a tandem sequence of reactions involving an intramolecular diyl trapping reaction
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across a diylophile directly linked to the diyl followed by an intramolecular Diels-Alder
reaction with the remaining pi system, whose role has changed from that of a potential

diylophile to that of a dienophile.
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4
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1 1

1645, 1455(brd) ecm . H NMR (300 MHz) 5.872 (1H, d&dt, Jq

Cﬂ), 5.863 (1H, s, vinyl at C4), 5.066 (1H, ddt, Jd = 16.8, Jd = 1.8, Jt = 1.8, vinyl at C_I2

CHCH3) 120.0939 (calc. for C Hy o 120.0939); (M - C’HZCHZCH3)

= 16.8, Jy = 10.5, J, = 6.6, vinyl at

cis to the alkyl chain), 4.995 (1H, ddt, Jd = 10.2, Jd = 1.8, Jt = 1.5, vinyl at C12 trans to
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CH2CH=(}12) 121.0642 (calc. for CBHgo 121.0653).
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