INTRAMOLECULAR 1, 3-DIYL TRAPPING REACTIONS. USE OF A DIVLOPHILE DIRECTLY LINKED TO THE DIVL. PREPARATION OF BICYCLIC FURANS.

Kevin D. Moeller and R. Daniel Little Department of Chemistry University of California, Santa Barbara Santa Barbara, California 93106

ABSTRACT. The chemistry of diazenes 1-3, each of which possesses a divlophile directly linked by a C-C bond to a latent 1,3-diyl, was investigated. Each undergoes a loss of nitrogen and conversion to products 4-6 respectively.

In conjunction with efforts designed to expand the scope of the intramolecular 1,3-diyl trapping reaction and to demonstrate that it is useful for the construction of a reasonably wide range of different ring systems, we elected to investigate the chemistry of diazenes 1-3.^{1,2} These compounds were selected (1) to investigate the chemistry of a system where, assuming for the sake of discussion,³ that a 2-alkylidenecyclopentane-1,3-diyl is involved, the diyl and diylophile are linked together directly by a C-C bond; (2) to determine whether a heteroatom containing diylophile could be used, thereby leading to the construction of heterocycles; and (3) to determine which, if either, of the two pi bonds in 3 would undergo preferential cycloaddition.

1, X = 0, $R = CH_2CH_3$ 2, X = CH_2 , R = CH_2CH_3 3, X = 0, $R = CH = CH_2$

Diazene <u>1</u>, a system which incorporates a carbonyl unit as the diylophile, was heated to 50° C in deuterochloroform and the course of the reaction monitored by TLC and by ¹H NMR at 300 MHz. After completion of the reaction and rapid chromatography on silica gel, a single product whose spectral data were entirely consistent with that of the bicyclic furan <u>4</u> was isolated in 87% yield.^{3,4} Thus, it appears that the intramolecular diyl trapping reaction provides a simple and reasonably efficient entry into bicyclic furans. Similarly, reflux of a THF solution of diazene <u>2</u>, a system wherein the carbonyl unit of <u>1</u> has been replaced by a simple C-C pi bond, resulted in its conversion to diene <u>5</u> in 76% yield (¹H NMR).

Diazene 3 was synthesized and its chemistry was investigated to focus attention upon item three above. After refluxing 3 in THF and removing the solvent (reaction monitored by TLC), it was discovered that 3 was converted to triene 7 which smoothly rearranged to furan 6 upon chromatography over silica gel (70% overall).

This result promises to be of value in the implementation of synthetic schemes which call for the use of a tandem sequence of reactions involving an intramolecular diyl trapping reaction across a divlophile directly linked to the divl followed by an intramolecular Diels-Alder reaction with the remaining pi system, whose role has changed from that of a potential divlophile to that of a dienophile.

ACRNOMLEDCHENTS. We are very grateful to the National Cancer Institute (Grant Number CA 21144) for their continued support of our research. RDL thanks the Alfred P. Sloan Foundation for a Fellowship.

REFERENCES AND NOTES

For example, refer to: (a) Little, R.D.; Bode, H.; Stone, K.J.; Wallquist, O. J. Org
Chem. 1985, 50, in press. (b) Campopiano, O.; Little, R.D.; Petersen, J.L. J. Am. Chem. Soc.
1985, 107, in press. (c) Little, R.D.; Carroll, G.L.; Petersen, J.L. J. Am. Chem. Soc. 1983,
105, 928.

 Each diazene was prepared from 2,2-dimethoxy-5-pentenal, cyclopentadiene, and bis(2,2,2-trichloroethoxycarbonyl)azo dicarboxylate by following a sequence analogous to that which we have reported previously. See, for example: Little, R.D.; Stone, K.J. J. Am. Chem.
Soc. 1983, 105, 6976 and references therein. Fulvene preparation: (a) Sternbach, D.D.; Hughes, J.W.; Burdi, D.F. J. Org. Chem. 1984, 49, 201. (b) Stone, K.J.; Little, R.D. J. Org. Chem. 1984, 49, 1849. Electrochemical conversion of biscarbamate to diazene linkage: Little, R.D.; Carroll, G.L. ibid. 1979, 44, 4720.

3. Several different mechanisms can be advanced. However, at this time, we have not conducted mechanistic studies and the reader should therefore not assume that a 2-alkylidenecyclopentane-1,3-diyl is or is not an intermediate. In somewhat related studies, Billups and co-workers have examined the mechanistic details of the rearrangement of vinylmethylenecyclopropane and vinylethylidenecyclopropane; a biradical intermediate has been implicated. See: Billups, W.E.; Leavell, K.H.; Lewis, E.S.; Vanderpool, S. J. Am. Chem. Soc. 1973, 95, 8096 and Shields, T.C.; Billups, W.E.; Lepley, A.R. ibid. 1968, 90, 4749. Independently, Kende and Gilbert have also examined the rearrangement. See: Kende, A.S.; Riecke, E.E. J. Am. Chem.Soc. 1972, 94, 1397 and Gilbert, J.C.; Higley, D.P. Tetrahedron Lett.

1973, 3639. For the conversion of cyclopropane aldehyde to 2,3-dihydrofuran see: Wilson, C.L. J. Am. Chem. Soc. 1947, 69, 3002.

4. Yields were not optimized. Spectral data for compound 4: IR (neat/NaCl): 2960, 2940, 2860, 1715, 1635, 1560, 1470, 1380, 1340, 1235, 1080, 950 cm⁻¹. ¹H NMR (300 MHz): 5.836 (1H, s, vinyl at C₄), 2.645 (2H, m, C₈ allylics), 2.578 (2H, t, J = 7.5, acyclic allylics), 2.496 (2H, m, C₆ allylics), 2.413 (2H, m, methylene at C₇), 1.600 (2H, m, homoallylic methylene at C_{10}), 1.389 (2H, m, methylene at C_{11}), 0.920 (3H, t, J = 7.2, terminal methyl). ¹³C NMR (75 MHz): 160.181 (C_3), 125.693 (C_5), 103.272 (d, C_4), 30.537 (t, C_8), 28.598 (t, C_6 or C_9), 27.691 (t, $C_6 \text{ or } C_9$), 24.715 (t, C_7), 23.646 (t, C_{10}), 22.288 (t, C_{11}), 13.844 (g, C_{12}). High Resolution Mass Spectrum (HRMS): (m/z) (M) 164.1215 (calc. for C11H160 164.1201); (M -CH_CH_CH_3) 121.0662 (calc. for CgHq0 121.0653). For compound 5, IR (neat/NaCl): 3060, 2920, 2860 (brd), 1650, 1600, 1465, 1440, 1380, 850, 770, 645 cm⁻¹. ¹H NMR (300 MHz): 5.915 (1H, brd s, vinyl at C_2), 5.164 (1H, brd s, vinyl at C_8), 3.05 (1H, brd m, methine at C_5), 2.573 (2H, brd m, allylics at C_7), 2.346 (1H, dd, J = 16.1, J = 8.4, proton on C_4 trans to methine at C_5), 2.175 $(2H, t, J = 7.2, acyclic allylics at C_{0}), 2.090$ (2H, m, methylene at C₆), 1.950 (1H, brd dd, J = 16.2, J = 6.3, proton on C_4 cis to methine at C_5), 1.360 (4H, brd m with many lines, methylene protons at C_{10} and C_{11}), 0.905 (3H, t, J = 7.2, terminal methyl). HRMS: (m/z) (M) 162.1412 (calc. for C₁₂H₁₈ 162.1409); (M - CH₂CHCH₃) 120.0939 (calc. for C₉H₁₂ 120.0939); (M - CH₂CH₂CH₃) 119.0854 (calc. for $C_{0}H_{11}$ 119.0861). For compound 7, IR (neat/NaCl): 3080, 2930, 2860, 1710, 1645, 1455(brd) cm⁻¹. ¹H NMR (300 MHz) 5.872 (1H, ddt, $J_d = 16.8$, $J_d = 10.5$, $J_t = 6.6$, vinyl at C_{11}), 5.863 (1H, s, vinyl at C_4), 5.066 (1H, ddt, J_d = 16.8, J_d = 1.8, J_t = 1.8, vinyl at C_{12} cis to the alkyl chain), 4.995 (1H, ddt, $J_d = 10.2$, $J_d = 1.8$, $J_t = 1.5$, vinyl at C_{12} trans to the alkyl chain), 2.654 (4H, m, allylics at C_8 and C_9), 2.494 (2H, m, allylics at C_6), 2.393 (4H, m, methylenes at C_7 and C_{10}). HRMS: (m/z) (M) 162.1036 (calc. for $C_{11}H_{14}O$ 162.1045); (M -CH₂CH=CH₂) 121.0642 (calc. for C₈H₀O 121.0653).

(Received in USA 2 April 1985)